
PyOMP: Parallel programming for CPUs and GPUs with OpenMP
and Python

Giorgis Georgakoudis∗
georgakoudis1@llnl.gov

Lawrence Livermore National
Laboratory

Livermore, California, USA

Todd A. Anderson∗
todd.a.anderson@intel.com

Intel Research Labs
Hillsborough, Oregon, USA

Stuart Archibald
sarchibald@anaconda.com

The Numba project
(sponsored by Anaconda Inc.)

United Kingdom

Bronis de Supinski
desupinski1@llnl.gov

Lawrence Livermore National
Laboratory

Livermore, California, USA

Timothy G. Mattson
tim@timmattson.com
Human Learning Group

Ocean Park, Washington, USA

Abstract
Python is the most popular programming language. OpenMP is
the most popular parallel programming API. Projecting OpenMP
into Python will help expand the HPC community. We call our
Python-based OpenMP system PyOMP.

In this short paper we describe PyOMP and its use for parallel
programming for CPUs and GPUs. We describe its implementation
through the well known Numba just-in-time (JIT) compiler and
how to install PyOMP on your own systems. We provide some
performance results suggesting performance on par with that from
C and OpenMP, but our focus here is not detailed benchmarking.
We leave that to other papers. Our goal here is to show how to use
PyOMP so we can grow the PyOMP community.

Keywords
Python, OpenMP, Parallel Programming, PyOMP

1 Introduction
Python is the world’s most popular programming language [2,
3]. OpenMP is the world’s most popular parallel programming
model [7]. To make Python a more effective language for HPC, we
need OpenMP inside Python.

We recently released PyOMP [8], a system that maps OpenMP
into Python using the Numba Just-In-Time (JIT) compiler. Orig-
inally, PyOMP only supported parallel programming for a CPU.
In this paper, we introduce our extension of PyOMP to support
parallel programming for a GPU.

Given hardware trends with tightly integrated CPUs and GPUs,
programming CPUs and GPUs through a single API is important.
This will let code move between the CPU and the GPU as we map
each portion of our applications onto the most suitable hardware.
The fact PyOMP supports both CPU and GPU programming could
turn out to be an extremely important capability.

This is a short paper, so we need to be concise in our presentation.
We will start by introducing PyOMP in enough detail so people can
start using it. We will take a simple program and show how it can be
parallelized using the key design patterns for parallel programming.
Our goal with this paper is to build a user community around
∗Both authors contributed equally to this research.

PyOMP, so we close the paper with a detailed description of how
to install PyOMP on your own systems.

2 PyOMP: A Pythonic OpenMP User Interface
Our goal is a Python interface to OpenMP that is pythonic. OpenMP
is a directive driven system that supports a style of parallel program-
ming where parallelism is added incrementally to a working pro-
gram. In C/C++ this is donewith pragmas.What is the Pythonic ana-
log to pragmas for communicating with the runtime/compilation
system?

We found [4] that the with statement provides the behavior we
needed. The Python with statement invokes a context manager to
open a resource, carry out operations using that resource, and then
close that resource. This can apply to a team of threads on a CPU or
to a kernel offloaded onto a GPU. For example, the following code
will create a team of threads (the resource) to carry out a vector
addition in PyOMP.
with openmp("parallel for"):

for i in range(N):
C[i] = A[i]+B[i]

At the end of the context statement, the team of threads are joined
so only a single threads proceeds. A vector addition on a GPUwould
be accomplished with very similar code using PyOMP.
with openmp("target teams loop"):

for i in range(N):
C[i] = A[i]+B[i]

The target constructmoves thework to theGPUwhile the teams loop
construct maps that work (the loop iterations) onto the index space
defined by the loop bounds. With loop you leave all details of how
the work distribution is managed to the OpenMP system. Lower
level constructs are available (as we describe later) when more de-
tailed control is needed. In our view, this design is pythonic, easy
to use, and lets one seamlessly move between CPU parallelism and
GPU parallelism within the same program.

The key to implementing PyOMP is the Numba JIT compiler.
You decorate the function containing pyomp context statements
with the @njit decorator. Numba will JIT compile the code and
cache it for later use. This means you only pay the cost for JIT
compilation once. The resulting code targets LLVM. By using a

https://orcid.org/0000-0001-6542-3555
https://orcid.org/0000-0002-5739-6320
https://orcid.org/0000-0002-0339-1006
https://orcid.org/0000-0002-6106-8717

Georgakoudis et al.

version of LLVM that includes an OpenMP runtime library, we
are able exploit the full functionality of OpenMP in our generated
LLVM code. This has the further advantage of bypassing Python’s
Global Interpreter Lock (GIL) to achieve parallel performance from
multithreaded execution.

In the following sections we will explore in more detail how to
use PyOMP to write multithreaded code and to write code that exe-
cutes on a GPU.Wewill do this by looking at the key design patterns
used in parallel computing. By design, if you know programming
with OpenMP for C, C++ or Fortran you know programming in
PyOMP.

2.1 PyOMP: CPU programming
Most programming of the CPU uses one of three patters: the Single
ProgramMultiple Data (SPMD) pattern, (2) the loop level parallelism
pattern, or the Divide and conquer pattern (with tasks). Follow-
ing closely the discussion from our SciPy paper [4], we describe
PyOMP for CPU programming by considering a simple program
(numerical integration to approximate 𝜋) implemented in each of
these patterns.

2.1.1 The SPMD Pattern. The Single Program Multiple Data Pat-
tern (SPMD) is probably the most commonly used design pattern
in all of parallel computing. We show a program using that pattern
in figure 1. In an SPMD pattern, you create a team of threads and
then, using the rank of a thread (a number ranging from zero to the
number of threads minus one) and the number of threads, explic-
itly control how work is divided among the threads. Threads are
created with the parallel construct expressed in PyOMP using the
with context statement. The identifier openmp indicates this is an
element of PyOMP and parallel indicates that the compiler should
fork a team of threads. These threads come into “existence” at that
point in the program and they each redundantly execute the work
in the region associated with the with statement.

OpenMP is a shared memory API. The threads “belong” to a
single process and they all share the memory associated with the
process. Variables visible outside a parallel construct are by default
shared inside the construct. Variables created inside a construct
are by default private to the construct (i.e., there is a copy of the
variable for each thread in the team). It is good form in OpenMP
programming to make the status of variables explicit in an OpenMP
construct which we do with the shared and private clauses in fig-
ure 1.

In an SPMD program, you need an ID (or thread_num) of each
thread and number of threads (num_threads) in the team. We do
this with OpenMP runtime functions. All threads in a single team
see the same value for the number of threads (nThrds) so this is a
shared variable. In multithreaded programming, it is a data race if
multiple threads write to the same variable; even if the value being
written is the same for each thread. So we must assure that only
one thread sets the value for the number of threads. This is done
with a single construct. The other threads wait until the thread
executing the single construct is done before any threads execute
the following code.

Distribution of work between threads is handled through the
for-loop. Each thread starts with a loop iteration (i) equal to its
rank, which is incremented by the number of threads. The result is

from numba import njit
import numpy as np
from numba.openmp import openmp_context as openmp
from numba.openmp import omp_get_thread_num
from numba.openmp import omp_get_num_threads
MaxTHREADS = 32

@njit
def piFunc(NumSteps):

step = 1.0/NumSteps
partialSums = np.zeros(MaxTHREADS)
with openmp('''parallel shared(partialSums,nThrds)

private(threadID,i,x,localSum)'''):
threadID = omp_get_thread_num()
with openmp("single"):

nThrds = omp_get_num_threads()

localSum = 0.0
for i in range(threadID,NumSteps,nThrds):

x = (i+0.5)*step
localSum = localSum + 4.0/(1.0 + x*x)

partialSums[threadID] = localSum

pi = step*np.sum(partialSums)
return pi

pi = piFunc(100000000)

Figure 1: A program using the SPMD pattern to numerically
approximate a definite integral that should equal 𝜋 .

loop iterations dealt out as if from a deck of cards. This commonly
used technique is called a “cyclic distribution of loop iterations”.
This loop sums values of the integrand which we accumulate into a
location local to each thread. Since we need to later combine these
local sums to get the final answer, we store the local sum into a
shared array (partialSums).

When the parallel region ends the team of threads join together
and the original thread continues. We show runtimes for this SPMD
program in table 1. We do not include the time for the JIT compila-
tion. This is usually justified since in a full application, a function is
JIT’ed once and then called many times. As we can see in the table,
the runtimes for PyOMP and C/OpenMP are comparable.

2.1.2 Loop Level Parallelism. The Loop Level Parallelism pattern
is the best known pattern for OpenMP. This is shown in figure 2.
Parallelism is introduced through a singlewith statement to express
the parallel for construct. This construct creates a team of threads
and then distributes the iterations of the loop among the threads.
To accumulate the summation across loop iterations, we include the
reduction clause. This clause defines reduction with the + operator
over the variable sum. A copy of this variable is created for each
thread in the team. It is initialized to the identity for the operator
(which in this case is zero). At the end of the loop, all the threads
wait for the other threads (a synchronization operation called a
barrier). Before exiting the barrier, the local copies of sum are
combined into a single value, that value is combined with the value
of sum from before the parallel loop construct, and the threads join

PyOMP: Parallel programming for CPUs and GPUs with OpenMP and Python

N SPMD loop task C SPMD C loop C Task
1 0.450 0.447 0.453 0.448 0.444 0.445
2 0.255 0.252 0.245 0.242 0.245 0.222
4 0.164 0.160 0.146 0.149 0.149 0.131
8 0.0890 0.0890 0.0898 0.0826 0.0827 0.0720
16 0.0503 0.0520 0.0517 0.0451 0.0451 0.0431

Table 1: Programs to approximate a definite integral whose
value equals 𝜋 using the SPMD, loop level, and divide-and-
conquer/task pattern. Runtimes in seconds for PyOMP and
analogous C programs. Note: JIT compilation for the PyOMP
runtimes is not included. All programs were run on an Intel®
Xeon® E5-2699 v3 CPU with 18 cores running at 2.30 GHz. C
programs used the Intel® icc compiler version 19.1.3.304 as
icc -qnextgen -O3 -fiopenmp

.

from numba import njit
from numba.openmp import openmp_context as openmp

@njit
def piFunc(NumSteps):
step = 1.0/NumSteps
sum = 0.0
with openmp("parallel for private(x) reduction(+:sum)"):

for i in range(NumSteps):
x = (i+0.5)*step
sum += 4.0/(1.0 + x*x)

pi = step*sum
return pi

pi = piFunc(100000000)

Figure 2: A program using a parallel loop to numerically
approximate a definite integral that should equal 𝜋 .

so only the single, original thread continues. The results for this
pattern are shown as the second column in table 1. Once again, the
performance is similar to that achieved with the C version of the
program.

2.1.3 Tasks and Divide and Conquer. Our final pattern is complex
and requires more code than can fit in this short paper (all code used
in this paper, as well as PyOMP itself, is available in GitHub [1]). It
uses the Divide and Conquer pattern based on building a directed
Graph of tasks. A wide range of problems including optimization
problems, spectral methods, and cache oblivious algorithms use the
divide and conquer pattern.

The pattern consists of three phases: split, compute, and merge.
The split phase recursively divides a problem into smaller subprob-
lems. After enough splits, the subproblems are small enough to
directly compute in the compute phase. The final phase merges
subproblems together to produce the final answer.

An outline of how this works in PyOMP is shown in figure 3. If
the work is small enough, the function just does the computation
and returns the result (the compute phase). If not, then two tasks are
created (the split phase); one for the first half of the work and the
other for the second half. Once the tasks are created, that function
pauses and waits until the tasks have finished (the merge phase).

def doit(work):
if(small(work)):

x = do_the_comp(work)
with openmp("task shared(x1)"):

x1 = work(first_half(work))
with openmp("task shared(x2)"):

x2 = work(second_half(work))
with openmp("taskwait"):

x = x1 + x2
return x

Figure 3: The pattern of tasks and taskwait in the recursive
function in a divide and conquer pattern.

The tasking code based on this pattern resulted in the runtimes
summarized in table 1. Even though the code is more complex
than for the other two patterns, the runtimes for this problem are
comparable to the other patterns for both Python and C.

2.2 PyOMP: GPU programming
GPU programming with OpenMP [5] was added in OpenMP 4.0

released in 2013. To program a GPU, you define an index space (or
a grid). An instance of a function (a kernel) executes for each point
in that index space. All of the instances (work-items or threads) for
a given kernel invocation are organized into groups (teams) which
taken together define a league of teams. The team is the unit of
scheduling. For each team in a league, all the threads in the team
are active on a compute unit (or a streaming multiprocessor) of a
GPU at one time. The teams run on the compute units concurrently
with any extra teams (should there be more teams in a league than
compute units) enqueued and waiting to execute.

In Figure 4, we summarize the most commonly used constructs
and clauses for GPU programming with OpenMP. The fundamental
offload construct is target. It is used to offload data between the
CPU and the GPU by creating (and updating) a data region on
the GPU. The target construct is also used to launch a kernel on
the GPU. The teams construct creates a league of teams while the
distribute construct establishes the index space as the iterations
of a set of nested loops. These iterations are distributed among the
league of teams. The kernel itself is the loop-body of the nested
loops. Alternatively, as we showed earlier, detailed control of how
kernel istances map onto the GPU can be left to the compiler by
using a simple target teams loop construct.

For the most part, the semantics of constructs used for GPU pro-
gramming for PyOMP matches those for C/C++/Fortran [5]. There
are some details, however, that are different due to the ways Python
handles data compared to more traditional HPC languages. Given
the scope of this paper, we can’t discuss them here. These details,
and more, are discussed in depth in the PyOMP repository [1].

As for performance, detailed benchmarking for GPU program-
ming using PyOMP will appear in a paper that is currently un-
der preparation. We considered a subset of programs from the
HeCBench [6] program suite. Generally, we found comparable per-
formance with programs implementedwith C andOpenMP running
on NVIDIA A100 GPUs.

Georgakoudis et al.

Figure 4: The most commonly used PyOMP directives when programming a GPU with PyOMP.
PyOMP constructs as context statements: the first for data movement and the second for computation.

with openmp("target data map(to: A,B) map(tofrom: C)"):
with openmp("target teams distribute parallel for thread_limit(256) "):
for i in range(N):

C[i] += A[i] + B[i]

Explanation of PyOMP constructs and clauses.
Construct/Clause Description
target data Create a data region on the device.
map(to:A,B) Map arrays A and B to the device. Do not copy back to the host at the end of the data region
map(tofrom:C) Map array C to the device and copy back to the host from the device at the end of the data region.
target teams Offload work to the device and launch an initial thread for each team in the league of teams.
distribute Distribute the associated loop iterations among the league of teams.
parallel for create a team of threads to execute loop iterations in parallel for each of the teams.
thread_limit(256) Default number of threads (256) per team (fewer is OK if you run out of work).

3 Installing PyOMP on your own system
In this section, we describe the options for installing PyOMP on
one’s own system. The easiest way to install PyOMP is using the
Conda package manager. We provide PyOMP packages for four
different architectures: linux-ppc6le, linux-64, osx-arm64, and
linux-arm64. Installation is a single command:

conda install -c python-for-hpc -c conda-forge pyomp

It is also possible to try PyOMP, without a local installation, in
a Jupyter notebook using the free cloud-hosted Binder service on
a multi-core CPU. We provide a link to launch PyOMP through
Binder: PyOMP on Binder.

We also provide containers for the amd64 and arm64 architec-
tures as another way of installation-free usage. There are two ways
of using PyOMP from the container: (1) through Jupyter exporting
a web interface, and (2) through terminal access to the container
environment. We show commands to pull and run the container
assuming Docker (Podman is also an option).

docker pull ghcr.io/python-for-hpc/pyomp:latest
Jupyter
docker run -it -p 8888:8888 pyomp:latest
Terminal
docker run -it pyomp:latest /bin/bash

4 Conclusion
PyOMP maps OpenMP into Python to support HPC applications. It
is “Pythonic” and is a natural way for people to approach parallel
programming from within Python.

PyOMP works for CPU and GPU programming. Our bench-
marks show that once execution passes from the Python interpreter
to machine code (via Numba and LLVM), performance matches
that from lower-level programming languages that use the same
LLVM/runtime infrastructure. Hence, performance largely matches
that from coding with C and OpenMP.

At the same time, we acknowledge that more detailed bench-
marking is needed. Benchmarking done right is complex. This is
work in progress which will hopefully appear soon in a later paper.
Our goal in this paper was not a performance study. Our goal was to
make people aware of PyOMP and provide the information needed
to get started with PyOMP so we can build a PyOMP community.

Acknowledgments
This work was performed under the auspices of the U.S. Depart-
ment of Energy, partially funded by Lawrence Livermore National
Laboratory under Contract DE-AC52-07NA27344 (LLNL-CONF-
870683). This work is also supported by the U.S. Department of
Energy, Office of Science, Office of Advanced Scientific Comput-
ing Research, Scientific Discovery through Advanced Computing
(SciDAC) program.

References
[1] [n. d.]. github repository for PyOMP code. https://github.com/Python-for-HPC/

PyOMP. [Accessed 25-03-2024].
[2] [n. d.]. PopularitY of Programing Languages. https://pypl.github.io/PYPL.html.

[Accessed 25-03-2024].
[3] [n. d.]. TIOBE index. https://www.tiobe.com/tiobe-index/. [Accessed 25-03-2024].
[4] Todd A. Anderson and Timothy G. Mattson. 2021. Multithreaded parallel Python

through OpenMP support in Numba. http://conference.scipy.org/proceedings/
scipy2021/tim_mattson.html. In SciPy.

[5] Tom Deakin and Timothy G. Mattson. 2023. Programming your GPU with OpenMP.
The MIT Press.

[6] Zheming Jin and Jeffrey S. Vetter. 2023. A Benchmark Suite for Improving Perfor-
mance Portability of the SYCL Programming Model. In 2023 IEEE International
Symposium on Performance Analysis of Systems and Software (ISPASS). 325–327.
https://doi.org/10.1109/ISPASS57527.2023.00041

[7] Tal Kadosh, Niranjan Hasabnis, Timothy G. Mattson, Yuval Pinter, and Gal Oren.
2023. Quantifying OpenMP: Statistical Insights into Usage and Adoption. In IEEE
High Performance Extreme Computing (HPEC).

[8] Timothy G. Mattson, Todd A. Anderson, and Giorgis Georgakoudis. 2021. Py-
OMP: Multithreaded Parallel Programming in Python. Computing in Science &
Engineering 23, 6 (2021), 77–80. https://doi.org/10.1109/MCSE.2021.3128806

https://mybinder.org/v2/gh/Python-for-HPC/binder/HEAD
https://github.com/Python-for-HPC/PyOMP
https://github.com/Python-for-HPC/PyOMP
https://pypl.github.io/PYPL.html
https://www.tiobe.com/tiobe-index/
http://conference.scipy.org/proceedings/scipy2021/tim_mattson.html
http://conference.scipy.org/proceedings/scipy2021/tim_mattson.html
https://doi.org/10.1109/ISPASS57527.2023.00041
https://doi.org/10.1109/MCSE.2021.3128806

	Abstract
	1 Introduction
	2 PyOMP: A Pythonic OpenMP User Interface
	2.1 PyOMP: CPU programming
	2.2 PyOMP: GPU programming

	3 Installing PyOMP on your own system
	4 Conclusion
	Acknowledgments
	References

