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Abstract

The Dragon Telemetry Service is an easy-to-use, scalable means for
users to visualize both hardware and custom metrics for complex
workflows implemented in Dragon. We discuss in-depth the Dragon
runtime, the architecture and capabilities of the telemetry service,
and how the telemetry service compares to existing tools. Use of the
telemetry service is demonstrated for a multi-language Al-in-the-
loop workflow where both built-in hardware metrics and custom
user metrics are visualized in a Grafana dashboard.

1 Overview
1.1 Problem Statement

There is broad interest in enabling complex workflows like those
presented in [3] to run on high performance computing (HPC) re-
sources. Many of these example workflows use machine learning
tools, often written in Python, alongside scientific applications -
which in contrast to the machine learning tools are often writ-
ten in C/C++ or Fortran. This distinguishes them from traditional
HPC applications that are typically written in a single language.
Although C/C++ implementations of machine learning tools are
available, they are limited in capability and make it challenging
for scientists to rapidly test different approaches. The scales and
complex stacks of emerging workflows make it difficult to profile
them using traditional HPC or cloud-based telemetry tools. Dragon
[5] enables the creation of complex HPC+AI workflows and pro-
vides a built-in telemetry feature. Dragon is a high-performance
distributed runtime for managing processes and data at-scale. It uti-
lizes high-performance communication objects to enable efficient
and transparent management of memory and movement of data -
both on- and off-node.

1.2 Dragon Telemetry Service

The Dragon Telemetry Service is integrated into the Dragon run-
time. It is designed to be scalable and enable users to visualize
hardware metrics as well as custom data streams. Dragon’s High
Speed Transport Agent (HSTA) allows the telemetry service to
take advantage of remote direct memory access (RDMA) primitives
when available - making it significantly more scalable than cloud-
native telemetry tools on HPC systems. To enable visualization,
the Dragon Telemetry Service provides HTTP endpoints that al-
low Grafana’s [7] OpenTSDB data stream to query both hardware
metrics and custom metrics.

The telemetry service is composed of the following four compo-
nents: an Aggregator, Collectors, Dragon Servers, and Metric
Servers. The Aggregator is responsible for handling requests from
Grafana. It parses those requests and using queues sends requests
to the Dragon Servers on nodes that data needs to be retrieved
from. The Dragon Server gathers the required data from the lo-
cal database and then returns these results to the Aggregator via
another queue. The collectors are responsible for collecting the
hardware metrics and the Metric Server adds data from both
the Collector and user application to the local database. Figure
1 shows how these components are distributed in a multi-node
allocation and how the components interact with Grafana, the user
application, and each other.

1.3 Existing Solutions

Tool Pros Cons
Work Load no installation single metric at a time,
Manager no visualization,
(WLM) [8] difficult to gather
user-defined metrics
LDMS [1] RDMA-enabled, no Python support, no
run-time visualization, support for general
can generate custom custom application
metrics for Kokkos metrics
applications
Prometheus | run-time visualization | limited scalability due
[9] to single-node
database and TCP
communication
Weights & integrates with does not generalize to
Biases [4] common ML non-ML workflows,
frameworks, cannot interact with
end-to-end tracking of data directly from
ML pipelines, version workflow
control for models
HPCtoolkit easy to generate limited Python
[10], detailed traces support, sampling and
CrayPat [6] tracing data only
available for
post-processing

Table 1: Comparison of commonly used telemetry tools
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Figure 1: Dragon telemetry service architecture

Any discussion of a new telemetry solution is incomplete without
discussing existing tools. Table 1 provides a list of common tools
and some of the pros and cons of each. Many of the most popular
tools were designed for the cloud with system administrators rather
than application developers and scientists in mind. This can make
them difficult for users to get access to or install given permission
differences. These tools typically do not utilize RDMA-enabled
networks and struggle to scale on leadership class HPC systems.
An exception to this is the Lightweight Distributed Metric Service
(LDMS) [1], which does utilize RDMA primitives and has been run
at impressive scales.

Another category of tools, that are built with scientists and HPC
users in mind, are statistical profiling tools. Profiling tools provide
timing and statistics for different function calls. This information is
only available after the application has completed running. These
tools serve an orthogonal purpose to the Dragon Telemetry Ser-
vice. The traces that statistical profiling tools provide are great for
optimizing monolithic applications but these profilers have lim-
ited support for multi-language workflows. Statistical performance
analysis tools do not allow for real-time visualization of a workflow
or provide a way for the workflow to react to the performance data.

2 Proof of Solution

Being a part of the Dragon infrastructure, telemetry can be run with
minimal changes to existing code. We present the following demo
to show what users can achieve with the Dragon Telemetry Service.
We run an Al-in-the-loop workflow which uses a small model imple-
mented using PyTorch [2] to compute an approximation of sin(x).
It includes an MPI job that computes the Taylor approximation and
an MPI job that generates a new training data set when needed.
The architecture of the workflow is shown in Figure 2.

To initialize the Dragon Telemetry Service, users simply need to
add the argument telemetry-level=[level] to the usual Dragon
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Figure 2: Workflow diagram for AI-in-the-loop example. This
workflow has multiple MPI programs and manages Python
processes while these programs are executing,.

startup command. This launches an additional telemetry head pro-
cess that runs alongside the workflow. The telemetry Aggregator
exposes a HTTP API that allows Grafana to request, retrieve, and vi-
sualize metrics that have been collected by telemetry Collectors.
The Dragon Telemetry Service also provides a simple interface
to add custom metrics so users can add metrics that are relevant
to their workflows. A sample code snippet is shown in Figure 4.
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Figure 3: Grafana dashboard with Dragon Telemetry Service metrics

# import telemetry for custom metrics
from dragon.telemetry.telemetry
import Telemetry

# initialize telemetry
dt = Telemetry()

# inside target process...
dt.add_data("predicted", float(model_val))
dt.add_data("actual", float(math.sin(x)))

# Close telemetry processes
dt.finalize ()

Figure 4: Code sample for adding custom metrics to teleme-
try.

Custom metrics can be assigned a telemetry level. This level is
hierarchical, and setting the telemetry-level=[level] at launch
to a certain value ensures that only those metrics that are less than
or equal to that level are collected.

To simplify the entire process, we provide an easily imported
Grafana dashboard template. This dashboard can be further cus-
tomized according to the context of the application. As seen in
Figure 3, we have added custom metrics such as the value of sin(x),
the value predicted by the model, and the difference between these

two values during every iteration of training. The first panel com-
pares the actual and predicted values. The second panel shows the
changes in the difference metric during each iteration. In the last
panel we can see that the CPU usage increases significantly while
the computationally expensive training and inference jobs are being
executed.

3 Future Work

Next steps for the Dragon Telemetry Service include: support for
GPU hardware metrics, an API for users to query and analyze
metrics from within the workflow, ability to save databases and
visualize data offline, and multi-language custom metric support.
Investigation of other telemetry tools will continue and any oppor-
tunities to integrate with existing tools to improve scalability or
ease-of-use will be taken.
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