Visualizing Workflows with the Dragon Telemetry Service

Indira Pimpalkhare
Maria Kalantzi

Colin Wahl
indira.pimpalkhare@hpe.com
maria.kalantzi@hpe.com
colin.wahl@hpe.com
Hewlett Packard Enterprise
Seattle, Washington, USA

Abstract

The Dragon Telemetry Service is an easy-to-use, scalable means for
users to visualize both hardware and custom metrics for complex
workflows implemented in Dragon. We discuss in-depth the Dragon
runtime, the architecture and capabilities of the telemetry service,
and how the telemetry service compares to existing tools. Use of the
telemetry service is demonstrated for a multi-language Al-in-the-
loop workflow where both built-in hardware metrics and custom
user metrics are visualized in a Grafana dashboard.

1 Overview
1.1 Problem Statement

There is broad interest in enabling complex workflows like those
presented in [3] to run on high performance computing (HPC) re-
sources. Many of these example workflows use machine learning
tools, often written in Python, alongside scientific applications -
which in contrast to the machine learning tools are often writ-
ten in C/C++ or Fortran. This distinguishes them from traditional
HPC applications that are typically written in a single language.
Although C/C++ implementations of machine learning tools are
available, they are limited in capability and make it challenging
for scientists to rapidly test different approaches. The scales and
complex stacks of emerging workflows make it difficult to profile
them using traditional HPC or cloud-based telemetry tools. Dragon
[5] enables the creation of complex HPC+AI workflows and pro-
vides a built-in telemetry feature. Dragon is a high-performance
distributed runtime for managing processes and data at-scale. It uti-
lizes high-performance communication objects to enable efficient
and transparent management of memory and movement of data -
both on- and off-node.

1.2 Dragon Telemetry Service

The Dragon Telemetry Service is integrated into the Dragon run-
time. It is designed to be scalable and enable users to visualize
hardware metrics as well as custom data streams. Dragon’s High
Speed Transport Agent (HSTA) allows the telemetry service to
take advantage of remote direct memory access (RDMA) primitives
when available - making it significantly more scalable than cloud-
native telemetry tools on HPC systems. To enable visualization,
the Dragon Telemetry Service provides HTTP endpoints that al-
low Grafana’s [7] OpenTSDB data stream to query both hardware
metrics and custom metrics.

The telemetry service is composed of the following four compo-
nents: an Aggregator, Collectors, Dragon Servers, and Metric
Servers. The Aggregator is responsible for handling requests from
Grafana. It parses those requests and using queues sends requests
to the Dragon Servers on nodes that data needs to be retrieved
from. The Dragon Server gathers the required data from the lo-
cal database and then returns these results to the Aggregator via
another queue. The collectors are responsible for collecting the
hardware metrics and the Metric Server adds data from both
the Collector and user application to the local database. Figure
1 shows how these components are distributed in a multi-node
allocation and how the components interact with Grafana, the user
application, and each other.

1.3 Existing Solutions

Tool Pros Cons
Work Load no installation single metric at a time,
Manager no visualization,
(WLM) [8] difficult to gather
user-defined metrics
LDMS [1] RDMA-enabled, no Python support, no
run-time visualization, support for general
can generate custom custom application
metrics for Kokkos metrics
applications
Prometheus | run-time visualization | limited scalability due
[9] to single-node
database and TCP
communication
Weights & integrates with does not generalize to
Biases [4] common ML non-ML workflows,
frameworks, cannot interact with
end-to-end tracking of data directly from
ML pipelines, version workflow
control for models
HPCtoolkit easy to generate limited Python
[10], detailed traces support, sampling and
CrayPat [6] tracing data only
available for
post-processing

Table 1: Comparison of commonly used telemetry tools



Indira Pimpalkhare, Maria Kalantzi, and Colin Wahl

»[ Dragon Queue |
J
.

»{ Dragon Queue
—

»[ Dragon Queue —]

Taptop / Node 1
Grafana Aggregator |~
\\7—> Dragon Server
Metric Server

User App

/ Node 2 \

|—  Dragon Server ji
Local DB eee
Metric Server

Collector

( Node N \

—1— Dragon Server ji
Local DB

Metric Server

Collector

User App

—

User App

————————————{ oragonQueve |
J

Figure 1: Dragon telemetry service architecture

Any discussion of a new telemetry solution is incomplete without
discussing existing tools. Table 1 provides a list of common tools
and some of the pros and cons of each. Many of the most popular
tools were designed for the cloud with system administrators rather
than application developers and scientists in mind. This can make
them difficult for users to get access to or install given permission
differences. These tools typically do not utilize RDMA-enabled
networks and struggle to scale on leadership class HPC systems.
An exception to this is the Lightweight Distributed Metric Service
(LDMS) [1], which does utilize RDMA primitives and has been run
at impressive scales.

Another category of tools, that are built with scientists and HPC
users in mind, are statistical profiling tools. Profiling tools provide
timing and statistics for different function calls. This information is
only available after the application has completed running. These
tools serve an orthogonal purpose to the Dragon Telemetry Ser-
vice. The traces that statistical profiling tools provide are great for
optimizing monolithic applications but these profilers have lim-
ited support for multi-language workflows. Statistical performance
analysis tools do not allow for real-time visualization of a workflow
or provide a way for the workflow to react to the performance data.

2 Proof of Solution

Being a part of the Dragon infrastructure, telemetry can be run with
minimal changes to existing code. We present the following demo
to show what users can achieve with the Dragon Telemetry Service.
We run an Al-in-the-loop workflow which uses a small model imple-
mented using PyTorch [2] to compute an approximation of sin(x).
It includes an MPI job that computes the Taylor approximation and
an MPI job that generates a new training data set when needed.
The architecture of the workflow is shown in Figure 2.

To initialize the Dragon Telemetry Service, users simply need to
add the argument telemetry-level=[level] to the usual Dragon

Input data
I Parallel execution ‘4— Retrain (Omp\ElEﬁ

Calculate
Infer value from comparison value
Al model using lightweight
MPI program

I Parallel execution ‘

I ]

Is the inferred value
within tolerance?

Retrain the Al model on new dataset

Launch an expensive MPI program to
generate additional training data

No———»

Yes

Output
inferred
and exact
answer

Figure 2: Workflow diagram for AI-in-the-loop example. This
workflow has multiple MPI programs and manages Python
processes while these programs are executing,.

startup command. This launches an additional telemetry head pro-
cess that runs alongside the workflow. The telemetry Aggregator
exposes a HTTP API that allows Grafana to request, retrieve, and vi-
sualize metrics that have been collected by telemetry Collectors.
The Dragon Telemetry Service also provides a simple interface
to add custom metrics so users can add metrics that are relevant
to their workflows. A sample code snippet is shown in Figure 4.



Visualizing Workflows with the Dragon Telemetry Service

v Custom Metrics

Actual vs Predicted

[

17:26:48
== actual{host=x1003c7s4b0n0}

17:26:51 17:27:39 17:28:25

predicted{host=x1003c7s4bOn0}

17:29:12 17:29:59 17:30:46

v CPU Metrics

Memory Utilization

6.9 | u | | L U
os . U I U U U
67 1

17:26:00  17:26:30  17:27:00
== used_RAM{host=x1003¢7s4b0n0}
== used_RAM{host=x1003c7s4bln1} == used_RAM{host=x1003c7s5b0n0} == used_RAM{host=x1003c7s5b0n1}
1003c7s5b1nT}

17:27:30  17:28:00  17:28:30  17:29:00  17:29:30  17:30:00

used_RAM({host=x1003c7s4bOn1} == used_RAM{host=x1003c7s4bIn0}

17:30:30

= used_| 1003

5b1n0} = used_|

Difference

0.8

0.6

0.2

[
17:26:00  17:26:30  17:27:00
== difference{host=x1003c7s4b0n0}

17:27:30 17:30:30

17:30:00
s4b1n0}

CPU Utilization

4

[
17:26:00
= cpu|

17:26:30

17:27:00

17:27:30  17:28:00  17:28:30  17:29:00  17:29:30

17:30:00
1003c7s4b1n0}
1003c7s5b0n0} = cpu_percent{host=x1003c7s5b0nT}

17:30:30

cpu_j 100: = cpu

- cpul " 4bInT} = cpu_

= cpu_percent{host=x1003c7s5bTn0} = cpu_percent{host=x1003c7s5bIn1}

Figure 3: Grafana dashboard with Dragon Telemetry Service metrics

# import telemetry for custom metrics
from dragon.telemetry.telemetry
import Telemetry

# initialize telemetry
dt = Telemetry()

# inside target process...
dt.add_data("predicted", float(model_val))
dt.add_data("actual", float(math.sin(x)))

# Close telemetry processes
dt.finalize ()

Figure 4: Code sample for adding custom metrics to teleme-
try.

Custom metrics can be assigned a telemetry level. This level is
hierarchical, and setting the telemetry-level=[level] at launch
to a certain value ensures that only those metrics that are less than
or equal to that level are collected.

To simplify the entire process, we provide an easily imported
Grafana dashboard template. This dashboard can be further cus-
tomized according to the context of the application. As seen in
Figure 3, we have added custom metrics such as the value of sin(x),
the value predicted by the model, and the difference between these

two values during every iteration of training. The first panel com-
pares the actual and predicted values. The second panel shows the
changes in the difference metric during each iteration. In the last
panel we can see that the CPU usage increases significantly while
the computationally expensive training and inference jobs are being
executed.

3 Future Work

Next steps for the Dragon Telemetry Service include: support for
GPU hardware metrics, an API for users to query and analyze
metrics from within the workflow, ability to save databases and
visualize data offline, and multi-language custom metric support.
Investigation of other telemetry tools will continue and any oppor-
tunities to integrate with existing tools to improve scalability or
ease-of-use will be taken.

4 Acknowledgments

We would like to acknowledge the rest of the Dragon team: Michael
Burke, Yian Chen, Eric Cozzi, Zach Crisler, Julius Donnert, Sanian
Gaffar, Veena Ghorakavi, Faisal Hadi, Nick Hill, Kent Lee, Peter
Mendygral, Davin Potts, Nick Radcliffe, and Ashish Vinodkumar.

References

[1] Anthony Agelastos, Benjamin Allan, Jim Brandt, Paul Cassella, Jeremy Enos,
Joshi Fullop, Ann Gentile, Steve Monk, Nichamon Naksinehaboon, Jeff Ogden,
et al. 2014. The lightweight distributed metric service: a scalable infrastructure
for continuous monitoring of large scale computing systems and applications. In
SC’14: Proceedings of the International Conference for High Performance Computing,
Networking, Storage and Analysis. IEEE, 154-165.

Jason Ansel, Edward Yang, Horace He, Natalia Gimelshein, Animesh Jain, Michael
Voznesensky, Bin Bao, Peter Bell, David Berard, Evgeni Burovski, Geeta Chauhan,

[2



Anjali Chourdia, Will Constable, Alban Desmaison, Zachary DeVito, Elias Ellison,
Will Feng, Jiong Gong, Michael Gschwind, Brian Hirsh, Sherlock Huang, Kshiteej
Kalambarkar, Laurent Kirsch, Michael Lazos, Mario Lezcano, Yanbo Liang, Jason
Liang, Yinghai Lu, CK Luk, Bert Maher, Yunjie Pan, Christian Puhrsch, Matthias
Reso, Mark Saroufim, Marcos Yukio Siraichi, Helen Suk, Michael Suo, Phil Tillet,
Eikan Wang, Xiaodong Wang, William Wen, Shunting Zhang, Xu Zhao, Keren
Zhou, Richard Zou, Ajit Mathews, Gregory Chanan, Peng Wu, and Soumith
Chintala. 2024. PyTorch 2: Faster Machine Learning Through Dynamic Python
Bytecode Transformation and Graph Compilation. In 29th ACM International
Conference on Architectural Support for Programming Languages and Operating
Systems, Volume 2 (ASPLOS °24). ACM. https://doi.org/10.1145/3620665.3640366
Deborah Bard, Taylor Groves, Brandon Cook, Laurie Stephey, Wahid Bhimji,
Steve Farrell, Brian Austin, Kevin Gott, Shane Canon, Kristy Kallback-Rose, Jay
Srinivasan, Hai Ah Nam, and Nicholas J. Wright. 2023. Workflow Archetypes
White Paper. Technical Report. National Energy Research Scientific Computing

Indira Pimpalkhare, Maria Kalantzi, and Colin Wahl

Center, Lawrence Berkeley National Lab, Berkeley, CA 94720.

Weights & Biases. 2024. https://wandb.ai/site.

Michael Burke, Eric Cozzi, Zach Crisler, Julius Donnert, Veena Ghorakavi, Faisal
Hadi, Nick Hill, Maria Kalantzi, Kent Lee, Pete Mendygral, Indira Pimpalkhare,
Davin Potts, Nick Radcliffe, and Colin Wahl. 2024. DragonHPC. https://www.
dragonhpc.org/

Steve Kaufmann and Bill Homer. 2003. Craypat-cray x1 performance analysis
tool. Cray User Group (May 2003) (2003).
Grafana Labs. 2024. https://grafana.com/.
National =~ Energy  Research  Scientific
https://docs.nersc.gov/jobs/monitoring/.
Prometheus. 2014-2024. https://prometheus.io/.
Nathan Tallent, John Mellor-Crummey, Laksono Adhianto, Michael Fagan, and
Mark Krentel. 2008. HPCToolkit: performance tools for scientific computing. In
Journal of Physics: Conference Series, Vol. 125. IOP Publishing, 012088.

Computing. 2017-2024.


https://doi.org/10.1145/3620665.3640366
https://www.dragonhpc.org/
https://www.dragonhpc.org/

	Abstract
	1 Overview
	1.1 Problem Statement
	1.2 Dragon Telemetry Service
	1.3 Existing Solutions

	2 Proof of Solution
	3 Future Work
	4 Acknowledgments
	References

