

Exploring Data at Scale with Arkouda
A Practical Introduction to Scalable Data Science

Ben McDonald
 HPC Advanced Dev

 Hewlett Packard Enterprise
 Houston, Texas, USA

ben.mcdonald@hpe.com

ABSTRACT
Data scientists can be thought of as modern-day explorers,
venturing into the vast unknown of information. However, this
exciting journey is not without its hurdles. One of the biggest
challenges they face is the sheer immensity of data they
encounter. Modern datasets cannot fit in laptop memory,
containing terabytes or even petabytes of information. Working
with such massive data requires specialized tools and techniques
to extract meaningful insights. As data sets are growing ever
larger, data science demands interactivity, where scientists can
learn while working with the data. At the same time, data science
demands scalability, where scientists are able to work with data
sets in their entirety. Data scientists have naturally been drawn to
Python as it provides interactivity through its read, evaluate, print
loop and performance through its utilization of libraries written in
other languages, like C and Fortran. These libraries typically are
not designed for HPC and run into problems when attempting to
scale. The gap that Arkouda fills in the data science landscape is a
library that is both interactive, providing a familiar Python API,
and scalable, leveraging a scalable Chapel server in the backend.
Arkouda is a framework for scalable Python packages for
interactive data science and has applications ranging from
oceanography to net flow analysis.

KEYWORDS
Data science, big data, Python, distributed workflows,
parallelization, Chapel language, performance

1 Introduction
Python's interactive nature and its ability to leverage pre-
compiled, performant libraries like NumPy have long made it the
go-to language for data science. However, as datasets balloon
beyond individual machines, traditional Python struggles to keep
pace. To address scalability challenges, Python-based solutions
like Dask [1] have emerged, as well as systems that combine a
Python frontend with different backend technologies. Arkouda [2]
falls into the latter category. This NumPy-like package empowers
data scientists to conduct exploratory data analysis at
supercomputing scale. Arkouda users can tackle terabyte-sized
datasets distributed across thousands of nodes.

While initially focused on providing a scalable subset of
NumPy's functionality for data science, Arkouda's framework
itself has recently undergone a significant overhaul. This
framework enables rapid development of high-performance
computing code for diverse applications, extending its reach
beyond data science.

2 Scalability and Performance
Figure 1 presents the performance profile of Arkouda's argsort
operation. Argsort computes the indices required to sort an array,
enabling efficient retrieval of sorted elements. These benchmarks
were conducted on a Cray-EX supercomputer utilizing a
SlingShot interconnect. Notably, without architecture-specific
optimizations, Arkouda's argsort demonstrated near-linear
scalability, processing 256 TB of data across a cluster of 8,192
nodes in approximately 31 seconds.

Figure 1: Arkouda Argsort Performance

3 The Arkouda Architecture
Arkouda is a Python package designed for large-scale, distributed
exploratory data analysis. Built on a NumPy-like API, it offers a
familiar interface for data scientists, minimizing workflow
disruptions. The package comprises a Python frontend and a
Chapel backend. The frontend manages metadata and interacts
with the backend's distributed object store, enabling data to reside
on diverse computational resources, including supercomputers
and cloud environments. By decoupling where the data is stored
in memory from client memory, Arkouda facilitates seamless

analysis of massive datasets. The package's versatility has been
demonstrated in various domains, ranging from network flow
analysis to brain imaging analysis.

Figure 1 demonstrates the strong scalability and performance
of Arkouda's implemented and optimized operations. While
Arkouda’s capabilities currently encompass a specific set of
functionalities, its flexible framework is designed for easy
integration with Chapel libraries. Recent advancements have
significantly streamlined the development process, reducing the
need for extensive boilerplate code and in-depth knowledge of
Arkouda's internals to introduce new features.

Figure 2 compares the developer experience before and after
the framework changes. Previously, supporting covariance in
Arkouda necessitated a cumbersome 97 lines of primarily
boilerplate code. In contrast, the new framework requires only 7
intuitive lines to achieve the same functionality, significantly
reducing the cognitive load on developers and eliminating the
need for deep Arkouda expertise in order to make meaningful
contributions to the project.

Figure 2. Improved Arkouda developer experience

4 Related Technologies
There are two primary approaches to creating scalable Python
packages for HPC environments.

The first approach involves scaling traditional Python code to
operate on HPC machines. This method offers several advantages,
including seamless integration with existing Python packages like
PyTorch [3]. However, it often falls short in terms of performance
compared to native HPC code.

The second approach addresses performance limitations by
starting with high-performance code and providing a Python
interface. While delivering superior performance for specific
workloads, interoperability with existing Python libraries can be
challenging. Apache Spark [4] exemplifies this approach, using a
Scala backend and exposing a Python API.

A key distinction between Apache Spark and Arkouda lies in
their evaluation models. Spark's lazy evaluation is well-suited for
batch jobs with predefined workflows, enabling the creation of
optimized computation graphs. Conversely, Arkouda's eager
evaluation excels in dynamic scenarios where the workflow is
unknown in advance, allowing for on-the-fly computations and
iterative data exploration.

By combining the strengths of both systems, users can
leverage Arkouda for initial data exploration and workflow
development before transitioning to Spark for optimized batch
processing, maximizing the benefits of each platform.

5 Arkouda Usage Demo

5.1 Demo Goals
In this tutorial, attendees will work hands-on with a real-world
data set, performing data science through a Jupyter notebook in a
GitHub Codespace with Arkouda and Jupyter provided at the
click of a button. Through this tutorial, attendees will understand
how to launch and connect to an Arkouda server, get an overview
of the Arkouda API, understand the file formats supported by
Arkouda, and get a picture of how Arkouda can be used for real
data science workflows.

5.2 Demo Outline
To enhance accessibility and engagement, the Arkouda demo will
be conducted within GitHub Codespaces, allowing attendees to
follow along without requiring prior Arkouda installation.

The demonstration will commence by importing the NYC
Taxicab [5] dataset into the Arkouda environment. Subsequent
steps involve a preliminary data exploration to familiarize
attendees with the dataset's characteristics. To enrich the dataset
further, integration with Pandas will be showcased, demonstrating
Arkouda's interoperability. The demo will culminate in an
exploration of Arkouda's advanced features, including GroupBy,
before inviting participants to conduct their own analyses within
the provided Codespace environment.

REFERENCES
[1] Marta Moreno, Ricardo Vilaca and Pedro G. Ferreira. 2022. Scalable

transcriptomics analysis with Dask: applications in data science and machine
learning. In BMC Bioinformatics. https://doi.org/10.1186/s12859-022-05065-3.

[2] Ben McDonald. 2023. Removing Temporary Arrays in Arkouda. in Chapel
Implementors and Users Workshop (CHIUW'23). 2 pages. https://chapel-
lang.org/CHIUW/2023/McDonald.pdf.

[3] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James
Bradbury, Gregory Chanan, Trevor Killeen, Zeming Lin, Natalia
Gimelshein, Luca Antiga, Alban Desmaison, Andreas Köpf, Edward
Yang, Zach DeVito, Martin Raison, Alykhan Tejani, Sasank
Chilamkurthy, Benoit Steiner, Lu Fang, Junjie Bai and Soumith Chintala. 2019.
PyTorch: An Imperative Style, High-Performance Deep Learning Library. In
arxiv. NeurIPS, 12 pages. https://doi.org/10.48550/arXiv.1912.01703.

[4] Matei Zaharia, Reynold S. Xin, Patrick Wendell, Tathagata Das, Michael
Armbrust, Ankur Dave, Xiangrui Meng, Josh Rosen, Shivaram Venkataraman,
Michael J. Franklin, Ali Ghodsi, Joseph Gonzalez, Scott Shenker and Ion
Stoica. 2016. Apache Spark: A Unified Engine for Big Data Processing. In
Communications of the ACM. ACM, New York, NY, USA, 10 pages.
https://doi.org/10.1145/2934664.

[5] NYC Taxi and Limousine Commission (TLC) [Dataset]. (2024, August 6). TLC
Trip Record Data. Retrieved from  https://www.nyc.gov/site/tlc/about/tlc-trip-
record-data.page

