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ABSTRACT 
Data scientists can be thought of as modern-day explorers, 
venturing into the vast unknown of information. However, this 
exciting journey is not without its hurdles. One of the biggest 
challenges they face is the sheer immensity of data they 
encounter. Modern datasets cannot fit in laptop memory, 
containing terabytes or even petabytes of information. Working 
with such massive data requires specialized tools and techniques 
to extract meaningful insights. As data sets are growing ever 
larger, data science demands interactivity, where scientists can 
learn while working with the data. At the same time, data science 
demands scalability, where scientists are able to work with data 
sets in their entirety. Data scientists have naturally been drawn to 
Python as it provides interactivity through its read, evaluate, print 
loop and performance through its utilization of libraries written in 
other languages, like C and Fortran. These libraries typically are 
not designed for HPC and run into problems when attempting to 
scale. The gap that Arkouda fills in the data science landscape is a 
library that is both interactive, providing a familiar Python API, 
and scalable, leveraging a scalable Chapel server in the backend. 
Arkouda is a framework for scalable Python packages for 
interactive data science and has applications ranging from 
oceanography to net flow analysis. 
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1 Introduction 
Python's interactive nature and its ability to leverage pre-
compiled, performant libraries like NumPy have long made it the 
go-to language for data science. However, as datasets balloon 
beyond individual machines, traditional Python struggles to keep 
pace. To address scalability challenges, Python-based solutions 
like Dask [1] have emerged, as well as systems that combine a 
Python frontend with different backend technologies. Arkouda [2] 
falls into the latter category. This NumPy-like package empowers 
data scientists to conduct exploratory data analysis at 
supercomputing scale. Arkouda users can tackle terabyte-sized 
datasets distributed across thousands of nodes.  

While initially focused on providing a scalable subset of 
NumPy's functionality for data science, Arkouda's framework 
itself has recently undergone a significant overhaul. This 
framework enables rapid development of high-performance 
computing code for diverse applications, extending its reach 
beyond data science. 

2 Scalability and Performance 
Figure 1 presents the performance profile of Arkouda's argsort 
operation. Argsort computes the indices required to sort an array, 
enabling efficient retrieval of sorted elements. These benchmarks 
were conducted on a Cray-EX supercomputer utilizing a 
SlingShot interconnect. Notably, without architecture-specific 
optimizations, Arkouda's argsort demonstrated near-linear 
scalability, processing 256 TB of data across a cluster of 8,192 
nodes in approximately 31 seconds. 

Figure 1: Arkouda Argsort Performance 

3 The Arkouda Architecture 
Arkouda is a Python package designed for large-scale, distributed 
exploratory data analysis. Built on a NumPy-like API, it offers a 
familiar interface for data scientists, minimizing workflow 
disruptions. The package comprises a Python frontend and a 
Chapel backend. The frontend manages metadata and interacts 
with the backend's distributed object store, enabling data to reside 
on diverse computational resources, including supercomputers 
and cloud environments. By decoupling where the data is stored 
in memory from client memory, Arkouda facilitates seamless 



 
 

 

analysis of massive datasets. The package's versatility has been 
demonstrated in various domains, ranging from network flow 
analysis to brain imaging analysis.  

Figure 1 demonstrates the strong scalability and performance 
of Arkouda's implemented and optimized operations. While 
Arkouda’s capabilities currently encompass a specific set of 
functionalities, its flexible framework is designed for easy 
integration with Chapel libraries. Recent advancements have 
significantly streamlined the development process, reducing the 
need for extensive boilerplate code and in-depth knowledge of 
Arkouda's internals to introduce new features. 

Figure 2 compares the developer experience before and after 
the framework changes. Previously, supporting covariance in 
Arkouda necessitated a cumbersome 97 lines of primarily 
boilerplate code. In contrast, the new framework requires only 7 
intuitive lines to achieve the same functionality, significantly 
reducing the cognitive load on developers and eliminating the 
need for deep Arkouda expertise in order to make meaningful 
contributions to the project.  

 

Figure 2.   Improved Arkouda developer experience  

4 Related Technologies 
There are two primary approaches to creating scalable Python 
packages for HPC environments. 

The first approach involves scaling traditional Python code to 
operate on HPC machines. This method offers several advantages, 
including seamless integration with existing Python packages like 
PyTorch [3]. However, it often falls short in terms of performance 
compared to native HPC code. 

The second approach addresses performance limitations by 
starting with high-performance code and providing a Python 
interface. While delivering superior performance for specific 
workloads, interoperability with existing Python libraries can be 
challenging. Apache Spark [4] exemplifies this approach, using a 
Scala backend and exposing a Python API. 

A key distinction between Apache Spark and Arkouda lies in 
their evaluation models. Spark's lazy evaluation is well-suited for 
batch jobs with predefined workflows, enabling the creation of 
optimized computation graphs. Conversely, Arkouda's eager 
evaluation excels in dynamic scenarios where the workflow is 
unknown in advance, allowing for on-the-fly computations and 
iterative data exploration. 

By combining the strengths of both systems, users can 
leverage Arkouda for initial data exploration and workflow 
development before transitioning to Spark for optimized batch 
processing, maximizing the benefits of each platform.  

5 Arkouda Usage Demo 

5.1  Demo Goals 
In this tutorial, attendees will work hands-on with a real-world 
data set, performing data science through a Jupyter notebook in a 
GitHub Codespace with Arkouda and Jupyter provided at the 
click of a button. Through this tutorial, attendees will understand 
how to launch and connect to an Arkouda server, get an overview 
of the Arkouda API, understand the file formats supported by 
Arkouda, and get a picture of how Arkouda can be used for real 
data science workflows. 

5.2  Demo Outline 
To enhance accessibility and engagement, the Arkouda demo will 
be conducted within GitHub Codespaces, allowing attendees to 
follow along without requiring prior Arkouda installation.  

The demonstration will commence by importing the NYC 
Taxicab [5] dataset into the Arkouda environment. Subsequent 
steps involve a preliminary data exploration to familiarize 
attendees with the dataset's characteristics. To enrich the dataset 
further, integration with Pandas will be showcased, demonstrating 
Arkouda's interoperability. The demo will culminate in an 
exploration of Arkouda's advanced features, including GroupBy, 
before inviting participants to conduct their own analyses within 
the provided Codespace environment. 

REFERENCES 
[1] Marta Moreno, Ricardo Vilaca and Pedro G. Ferreira. 2022. Scalable 

transcriptomics analysis with Dask: applications in data science and machine 
learning. In BMC Bioinformatics. https://doi.org/10.1186/s12859-022-05065-3. 

[2] Ben McDonald. 2023. Removing Temporary Arrays in Arkouda. in Chapel 
Implementors and Users Workshop (CHIUW'23). 2 pages. https://chapel-
lang.org/CHIUW/2023/McDonald.pdf.  

[3] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James 
Bradbury, Gregory Chanan, Trevor Killeen, Zeming Lin, Natalia 
Gimelshein, Luca Antiga, Alban Desmaison, Andreas Köpf, Edward 
Yang, Zach DeVito, Martin Raison, Alykhan Tejani, Sasank 
Chilamkurthy, Benoit Steiner, Lu Fang, Junjie Bai and Soumith Chintala. 2019. 
PyTorch: An Imperative Style, High-Performance Deep Learning Library. In 
arxiv. NeurIPS, 12 pages. https://doi.org/10.48550/arXiv.1912.01703.  

[4] Matei Zaharia, Reynold S. Xin, Patrick Wendell, Tathagata Das, Michael 
Armbrust, Ankur Dave, Xiangrui Meng, Josh Rosen, Shivaram Venkataraman, 
Michael J. Franklin, Ali Ghodsi, Joseph Gonzalez, Scott Shenker and Ion 
Stoica. 2016. Apache Spark: A Unified Engine for Big Data Processing. In 
Communications of the ACM. ACM, New York, NY, USA, 10 pages. 
https://doi.org/10.1145/2934664. 

[5] NYC Taxi and Limousine Commission (TLC) [Dataset]. (2024, August 6). TLC 
Trip Record Data. Retrieved from  https://www.nyc.gov/site/tlc/about/tlc-trip-
record-data.page 

 
 


